3rd ASIA PACIFIC ONCOLOGY PHARMACY CONGRESS 7 - 9th July 2010

CHEMOTHERAPY INDUCED NAUSEA & VOMITING (CINV): WHAT'S NEW IN 2010?

Ms Vivianne Shih BSc (Pharm)Hons, BCPS, BCOP Senior Pharmacist, National Cancer Centre

Case 1

- Mr T.A.H, a 60 yr old man has been diagnosed with locally advanced Ca of the oropharynx
 - squamous cell carcinoma
 - T4a lesion with cervical node involvement
- He is currently receiving concurrent chemoradiation
- Today, he is due for his 2nd cycle of IV Cisplatin 100mg/m² (D1 only) chemotherapy
- How would you assess his risk for CINV?
- Given his previous CINV response, what modification(s) would you make to his antiemetic regimen?

- 1

Case 2

- A 23 yr old male, S.T.H has been diagnosed with Stage III testicular cancer
- He is due for his 1st cycle of BEP chemotherapy regimen
 - IV Cisplatin 20mg/m²/day (D1 to 5)
 - IV Etoposide 100mg/m²/day (D1 to 5)
 - IV Bleomycin 15mg/day on Day 1 & Day 2
 - IV Bleomycin 30mg/day on Day 8 & 15
 - Every 21 days

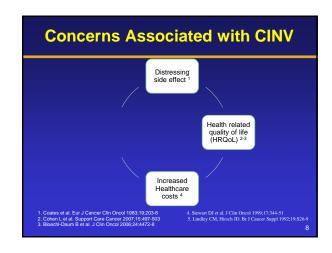
3

Case 2

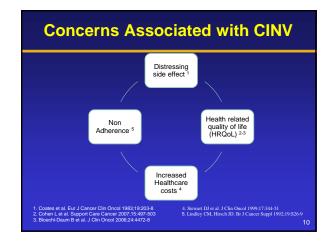
- Identify patient's risk factors for CINV
- What acute & delayed antiemetics would you recommend for him?

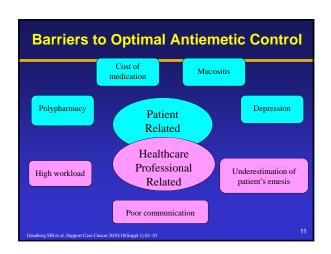
4

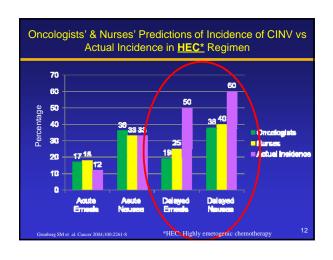
Objectives

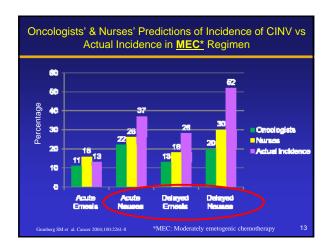

- Review the pathophysiology of CINV
- Review the newer classes of antiemetics available
- To assess patient- and treatment-related CINV risk factors & to recommend appropriate prophylaxis &/or treatment of CINV

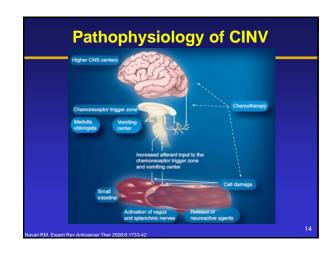

Distressing side effect 1

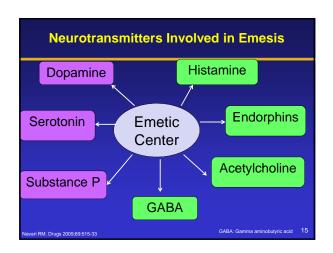

1. Coates et al. Eur J Concer Clip Oncol 1983-19-203-8
2. Cohen L et al. Support Core Concer 2007;15-407-503
3. Bloschi-Daum B et al. J Clin Oncol 2005;24:4472-8

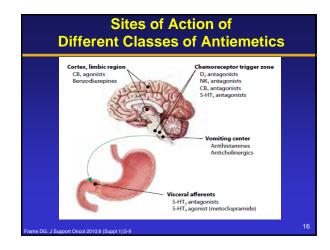

4. Sincurt DJ et al. J Clin Oncol 1999;17-344-51
5. Lindley CM, Hirsch JD. Br J Cancer Suppl 1992;19:526-9
6

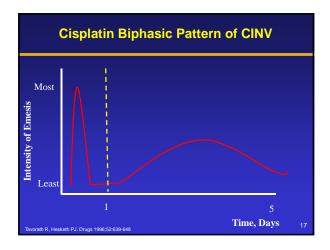

CINV - Most Feared Side Effect? Ranking 1980's 1995 NCC In house (Coates (de Boer-Dennert M study 2004 et al1) et al2) (not published) First Vomiting Nausea Thought of coming for treatment Second Hair Loss Damage to Nausea organs Third Hair Loss Vomiting Pain

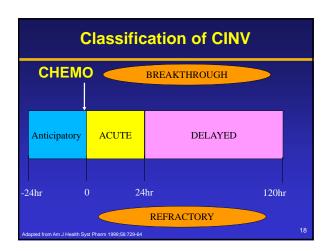




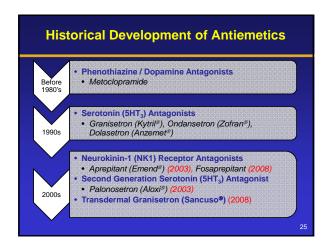








Emetic Risk of Chemotherapy Agents				
High (>90%)	Moderate (30 – 90%)	Low (10 – 30%)	Minimal (<10%)	
Cisplatin Streptozocin Cyclophosphamide ≥1,500mg/m² Carmustine Dacarbazine Dactinomycin	Oxaliplatin Cytarabine >1g/m² Carboplatin Ifosfamide Cyclophosphamide <1,500mg/m² Doxorubicin Daunorubicin Epirubicin Idarubicin Irinotecan	Paclitaxel Docetaxel Mitoxantrone Topotecan Etoposide Pemetrexed Methotrexate Gemcitabine Fluorouracil Trastuzumab	Bevacizumab Bleomycin Fludarabine Vinblastine Vincristine Vinorelbine	
Kris MG et al. ASCO Guideline	for Antiemetics in Oncology: Update.	J Clin Oncol 2006;24:2932-47	19	


Emetogenicity of Chemotherapy	NCCN	ASCO	
High (>90%)	NK1 receptor antagonist + Serotonin antagonist + Dexamethasone [+/- lorazepam (NCCN)]		
Moderate (30 – 90%)	Serotonin antagonist + Dexamethasone [+/- NK1 receptor antagonist / lorazepam]		
Low (10-30%)	Dexamethasone OR Any of the following Prochlorperazine, metoclopramide, &/or diphenhydramine &/or lorazapam	Low dose of dexamethasone	
Minimal (<10%)	None		

Antiemetic Guidelines - DELAYED CINV Emetogenicity of Chemotherapy High (>90%) Moderate (30 – 90%) Moderate (30 – 90%) Moderate (20 – 90%) NK1 receptor antagonist (Days 2-4) (E+/- lorazepam (NCCN)] Moderate (Days 2-3) OR (Days 2-3) O

Do not incorporate patient's response to prophylactic antiemetics in previous treatment regimen & individual patient's risk factors Do not account for multiday chemotherapy regimens Do not account for CINV in regimens that contain multiple chemotherapy agents

NK1 Receptor Antagonist Aprepitant (Emend®)

- Used in combination with serotonin antagonist & corticosteroid to prevent CINV in moderate to highly emetogenic chemotherapy
- Available as oral capsules
- ~65% bioavailability, not affected by food
- Primarily eliminated via CYP3A4 pathway
 - Moderate inhibitor / inducer of CYP3A4
 - Inducer of CYP2C9

Emend Product Insert 2003 Sanchez R et al. Drug Metab Dispos 2004;32:1287-1292 Shadle CR et al. J Clin Pharmacol 2004;44:215-33

26

Agents	PK Effects on	PK effects on	
	Aprepitant	Concomitant Drug	
Dexamethasone	None	↑ AUC 2.2 fold	
CYP3A4 Inhibitors Diiltiazem Ketoconazole	↑ AUC 2 fold ↑AUC ~5 fold ↑ t _{1/2} 3 fold	↑AUC 1.7 fold None	
CYP3A4 Inducer Rifampicin	↓AUC 11 fold ↓ t _{1/2} 3 fold	None	
CYP3A4 substrate Midazolam	None	↑ AUC 2.3 to 3.3 fold	
CYP2C9 substrate Warfarin	None	↓S-warfarin by 34% (Day 8) ↓ INR by 14% (Day 5)	
Oral contraceptives Ethinyl Estradiol (EE)	None	↓AUC of EE by 19% (Day 10)	

Olanzapine vs Aprepitant for the Prevention of Chemotherapy-Induced Nausea and Vomiting (CINV): A Randomized Phase III trial

> ASCO 2010 Abstract #9020 Navari RM. Gray SE, Kerr C

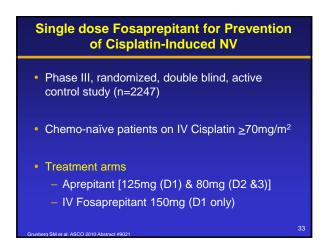
> > 28

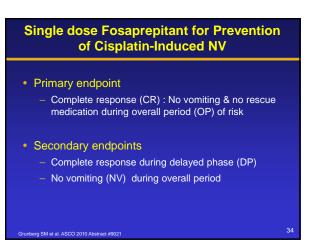
Olanzapine

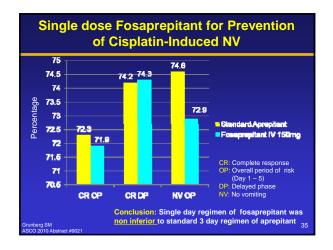
- Blocks multiple neurotransmitters
 - 5HT₃ & D₂ receptors
- Phase II trials¹⁻² have shown its efficacy in preventing acute & delayed CINV
- · Common side effect
 - Sedation, weight gain

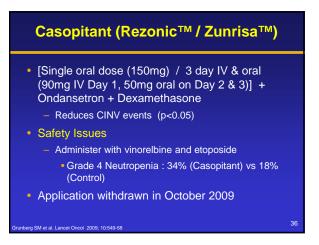
Navari RM et al. Support Care Cancer 2005;13:529-534
 Navari RM et al. Support Care Cancer 2007;15:1285-12

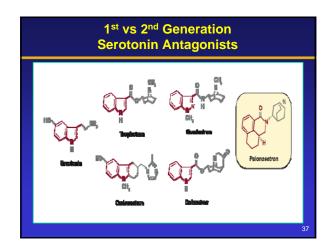
Olanzapine vs Aprepitant for the Prevention of CINV


- Randomized, Phase III trial
- Chemo-naïve patients receiving high emetogenic chemotherapy (cisplatin ≥ 70mg/m² or doxorubicin ≥ 50mg/m²)


Treatment Arms	Acute Antiemetics	Delayed Antiemetics
Olanzapine	PO Olanzapine 10mg IV Palonosetron 0.25mg IV Dexamethasone 20mg	PO Olanzapine 10mg (Days 2 to 4)
Aprepitant	PO Aprepitant 125mg IV Palonosetron 0.25mg IV Dexamethasone 12mg	PO Aprepitant 80mg (Days 2-3) PO Dexamethasone 4mg bd (Days 2-3)


lavari RM et al. ASCO 2010 #9020


Olanzapine vs Aprepitant for the Prevention of CINV N= 50 (29 females, 21 males) Median age= 58 yrs (39 – 81yrs) Overall (Day 1 to 5) Complete response (CR) (%) Olanzapine (n=27) 100 75 75 70 70 Aprepitant (n=23) Without Nausea (%) Olanzapine (n=27) 38 Aprepitant (n=23) 88 38


Fosaprepitant Water soluble prodrug of aprepitant (active) Converts to aprepitant within 30mins Fosaprepitant 115mg ≡ Aprepitant 125mg Dosing Day 1: Fosaprepitant (IV) 115mg Day 2 & 3: Aprepitant (PO) 80mg daily

1st vs 2nd Generation Serotonin **Antagonists** Drug (Brand Name) Affinity for 5HT₃ receptors Half lives (hrs) Metabolism (pKi) Ondansetron (Zofran®) 8.39 4 – 6 CYP2D6, CYP3A4 Granisetron 8.91 5 - 8 CYP3A4 (Kytril®) Dolasetron (Anzemet®) 7.6 5-8 CYP2D6, CYP3A4 Palonosetron 10.45 CYP2D6, CYP3A4 (Aloxi®)

Palonosetron vs Ondansetron					
Study	Design	Results		P value	
			Palonosetron	Ondansetron	
Gralla et al ¹ (2003) N=563	Phase III, double blind, randomized Moderate Emetogenic chemo	Complete response (CR) (1)Acute [2)Delayed (3)Overall (0-120hr)	81% 74.1% 69.3%	68.6% 55% 50.3%	< 0.01
Aapro et al ² (2006) N=667	Phase III, double blind, randomized High Emetogenic chemo	Complete response(CR) (1)Acute (2) Delayed (3) Overall (0-120hr)	64.7% 42% 40.7%	55.8% 28.6% 25.2%	p < 0.05

e 5

Palonosetron – ASCO 2010

- CINV associated hospital & ER visits in real practice: Palonosetron vs other 5HT₃ antiemetic regimens (Abstract #9127)
- Randomized pharmacokinetic evaluation of subcutaneous vs intravenous palonosetron in cancer patients treated with platinum-based chemotherapy (Abstract #e19514)

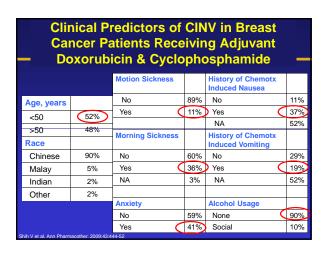
40

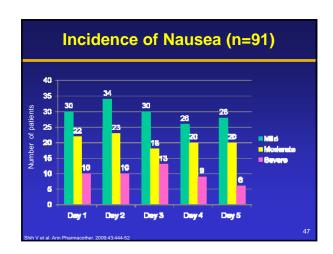
New Delivery Option Transdermal Granisetron (Sancuso®)

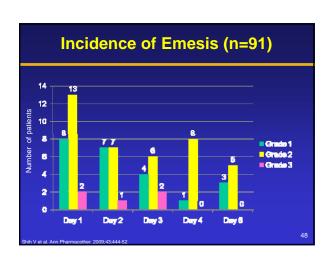
- Indication: Prevention of CINV in patients receiving HEC / MEC for up to 5 consecutive days
- Each patch contains 34.3mg of granisetron (~ 3.3mg of drug delivered daily)

41

Transdermal Granisetron (Sancuso®)


- Randomized, active control, double dummy, parallel group, Phase III trial (n=582)
- Pts received 3 to 5 day regimens of moderate to highly emetogenic chemotherapy
- Treatment arms
 - Transdermal granisetron (24-48hrs before chemo) vs
 - Oral granisetron (1 hr before chemo)
- Complete control
 - 60.2% (transdermal) vs 64.8% (oral) (p>0.05)


Grunberg SM et al. MASCC 2007


Transdermal Granisetron (Sancuso®) Administration Apply to clean, dry, intact skin on upper outer arm 4 to 48hrs before chemotherapy & removed a minimum of 24 hrs after completion of chemotherapy Can be worn up to 7 days Avoid direct exposure of application site to natural or artificial sunlight while wearing patch & for 10 days after removal

Transdermal Granisetron (Sancuso®) Advantages Convenience (esp for multiday chemo) Better adherence Disadvantages Receive unnecessary dose of medication if chemotherapy cancelled at the last minute Possible local skin irritation

How do Asians Measure Up? Warr et al Chan et al (N=856) (N=244) Overall Emesis Acute Emesis **Delayed Emesis** Predictors p value p value p value Young age 0.006 0.02 NS Alcohol History (+) 0.0048 NS NS Morning Sickness (+) 0.0007 NS NS Motion Sickness (+) NS 0.02 0.02 History of NA 0.02 0.04 chemotherapyinduced emesis

Case 1

- Mr T.A.H, a 60 yr old man has been diagnosed with locally advanced Ca of the oropharynx
 - squamous cell carcinoma
 - T4a lesion with cervical node involvement
- He is currently receiving concurrent chemoradiation
- Today, he is due for his 2nd cycle of IV Cisplatin 100mg/m² (D1 only) chemotherapy
- How would you assess his risk for CINV?
- Given his previous CINV response, what modification(s) would you make to his antiemetic regimen?

50

Case 1

- Upon assessment of patient, you retrieve the following information
- Medical history
 - Childhood asthma (last attack in his teens)
 - Diabetes (since 2007, on metformin 1g bd, last HbA1c 7.3%)
- Social history
 - Does not smoke or drink alcohol

51

Case 1

- Cycle 1 CINV response
- Vomitted
- Day 1: 3 times
- Day 2 4: 2 times each day
- Nausea
- Day 1: rated 3/10
- Day 2 3: rated 6/10
- Day 4: rated 4/10

--

Case 1

- Acute antiemetic prescribed for C1
 - PO Aprepitant 125mg
 - IV Dexamethasone 8mg
- Delayed antiemetic prescribed
 - PO Aprepitant 80mg (D2 & 3)
 - PO Dexamethasone 4mg bd (D2-4)
 - PO Metoclopramide 20mg qds prn
- He now c/o of dry mouth & odynophagia
- What antiemetics would you recommend for him for his 2nd cycle of chemotherapy?

Case 1

- · Risk factor assessment
 - Highly emetogenic regimen
 - History of CINV
 - Non alcohol drinker
- · Adherence to antiemetics
 - If non adherent reason(s)?

Case 1

- Recommendation
- Acute
 - Fosaprepitant?
 - Transdermal granisetron?
 - Palonosetron?
- Delayed
 - Lorazepam?
 - Olanzapine?

55

Case 2

- A 23 yr old male, S.T.H has been diagnosed with Stage III testicular cancer
- He is due for his 1st cycle of BEP chemotherapy regimen
 - IV Cisplatin 20mg/m²/day (D1 to 5)
 - IV Etoposide 100mg/m²/day (D1 to 5)
 - IV Bleomycin 15mg/day on Day 1 & Day 2
 - IV Bleomycin 30mg/day on Day 8 & 15
 - Every 21 days

5

Case 2

- Identify patient's risk factors for CINV
- What acute & delayed antiemetics would you recommend for him?

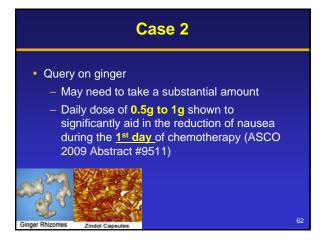
57

Case 2

- Medical History
 - Allergic rhinitis
 - History of motion sickness
- Social History
 - Social drinker
 - Non smoker
- His mother was informed by relatives that ginger tea / adding ginger to his diet might help with his CINV. She asked if it was truly effective & would you recommend it?

58

Case 2

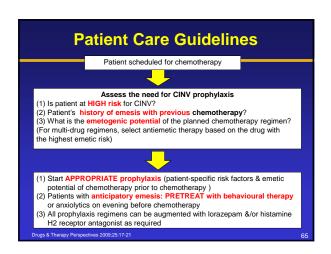

- Assessment of CINV risk factors
- √Highly emetogenic regimen
- √Young (23 yrs old)
- X Male
- X Chemo naïve
- √History of motion sickness
- ~ Social drinker

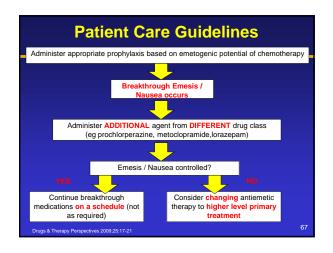
Case 2

- Acute antiemetics
- NK1 receptor antagonist +
- Serotonin antagonist
 - 1st generation vs 2nd generation vs transdermal granisetron
- Dexamethasone

60

Case 2 Delayed antiemetics NK1 receptor antagonist (D2-3) Dexamethasone (D2-D4) Dopamine antagonist (prn) Benzodiazepines?




General Points to Consider

- Drug allergy
- Medical history
- Adherence to medication
- Preferred route of administration
- Previous experience with antiemetics
 - Effective?
 - Side effects experienced?
- Onset & duration of CINV
- Cost

63

PATIENT ASSESSMENT IS CRUCIAL!

Future Challenges...

- To aim to achieve better control of nausea
- To be able to come up with a more simplified antiemetic regimen
- Novel delivery methods for antiemetics
- To develop validated predictive tool for assessment of CINV

6

PREVENTION IS STILL THE KEY!

