

The American Society of Clinical Oncology (ASCO) 2010 Annual Meeting, which returned to Chicago this year, held June 4-8.

 More than 32,000 clinicians, researchers, and top experts from more than 100 countries attended

Advanced Non Small Cell Lung Cancer

ALK Inhibitor Crizotinib Safe and Highly Active in ALK-Positive NSCLC "Plenary Presentation"

Bang Y, Kwak EL, Shaw AT, et al. Clinical activity of the oral ALK inhibitor, PF-02341066, in ALK-positive patients with non-small cell lung cancer (NSCLC). Program and abstracts of the 2010 Annual Meeting of the American Society of Clinical Oncology; June 4-8, 2010; Chicago, Illinios. Abstract 3.

Background

- ALK fusion protein
 - Caused by chromosomal inversion and/or translocation
 - Potentially oncogenic
 - Implicated in tumor cell survival and proliferation pathways

ALK = anaplastic lymphoma kinase

Background

- ALK-positive NSCLC
 - EML4-ALK fusion gene expressed in approximately 5% of NSCLC Potentially oncogenic
 - ALK inhibition associated with substantial tumor regression in preclinical NSCLC animal model [1]
 - No apparent response to epidermal growth factor receptor inhibition [2]

Soda M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561-566; 2. Shaw AT, et al. Cilinical features and outcome of patients with non-small-cell lung cancer who hathor EML4-Alk L Clini Oncol. 1000:72-6247-2509.

Background

- Crizotinib (PF-02341066)
 - Dual selective inhibitor of ALK and c-MET
 - ATP-competitive inhibitor
 - Orally available small molecule
- Potent inhibition of cell growth and induction of apoptosis in NSCLC cell lines
- Demonstrated safe in dose-escalation study[1]

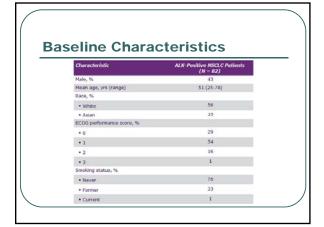
 Tan W, Wilner KD, Bang Y, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients. Program and abstracts of the 2010 Annual Meeting of the American Society of Clinica

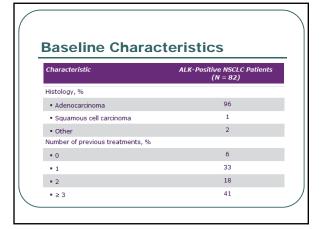
ALK Inhibitor Crizotinib Safe and Highly Active in ALK-Positive NSCLC

Current study evaluated safety and efficacy of crizotinib specifically in ALK-positive NSCLC patients

Ongoing, single arm, first-in-patient study

Schematic of Study Design


- Data for first 82 patients recruited into an expanded cohort from dose-escalation study
- Patients treated at recommended phase II dose
 - 250 mg twice daily


Schematic of Study Design

- Response determined using response evaluation criteria in solid tumors with radiographic scans
 - Repeated every 8 weeks

Eligibility

- Patients with ALK-positive NSCLC
 - ALK fusion determined by fluorescence in situ hybridization
 - No limits to previous treatment
 - Treated brain metastases allowed

Main Findings

- Crizotinib active in ALK-positive NSCLC patients
 - Confirmed ORR in 57% of patients (95% CI: 46% to 68%)
 - 57% ORR in patients with ECOG performance score 2 or 3

Main Findings

- Duration of response: 1-15 months
- Disease control rate at 8 weeks: 87% (95% CI: 77% to 93%)

Main Findings

- ORR to crizotinib declined with increasing number of previous therapies received
 - 80% with no previous treatment
 - 52% with 1 previous regimen
 - 67% with 2 previous regimens
 - 56% with ≥ 3 previous regimens

Main Findings

- PFS
 - 6-month PFS: 72% (95% CI: 61% to 83%)
 - Median PFS not yet reached
 - 70% of patients in follow-up for PFS
 - Median follow-up: 6.4 months

Other outcomes

 Crizotinib well tolerated, with few treatment-related grade 3/4 adverse events reported

Other outcomes

- Any grade 3/4 adverse event: 13%
 - Elevated alanine aminotransferase: 6%
 - Elevated aspartate aminotransferase: 6%
 - Lymphopenia: 2%
 - Hypophosphatemia: 1%
 - Neutropenia: 1%
 - Hypoxia: 1%
 - Dyspnea: 1%
 - Pulmonary embolism: 1%

Other outcomes

 Treatment-related grade 1/2 adverse events reported in ≥ 10% of patients, primarily gastrointestinal events and visual disturbance

Other outcomes

- ° Nausea: 54%
- ° Diarrhea: 48%
- Vomiting: 44%
- Visual disturbance: 42%
 - Defined as changes in light/dark accommodation with no abnormalities upon ophthalmologic exam
- Constipation: 24%
- ° Peripheral edema: 16%
- Dizziness: 15%
- o Decreased appetite: 13%
- Fatigue: 10%

Other outcomes

- Majority of patients (77%) remain on crizotinib
 - o Median duration of treatment: 5.7 months
- Reasons for discontinuation of crizotinib
 - ° Treatment-related adverse event (n = 1)
 - ° Unrelated adverse event (n = 1)
 - Unrelated death (n = 2)
 - o Other (n = 2)
 - o Disease progression (n = 13)

Summary of Key Conclusions

- Crizotinib active in patients with anaplastic lymphoma kinase (ALK)—positive non-smallcell lung cancer (NSCLC)
 - ORR: 57%
 - 6-month PFS rate: 72%
 - Response or SD (ie, disease control) in majority (87%) of patients

Summary of Key Conclusions

- Few serious adverse events reported
 - Most toxicity related to mild or moderate gastrointestinal events or visual disturbances

Summary of Key Conclusions

- High response to crizotinib in this population of largely pretreated NSCLC patients suggests crizotinib may become a potential new standard of care for ALKpositive patients
 - Supports development of targeted therapies in NSCLC

Summary of Key Conclusions

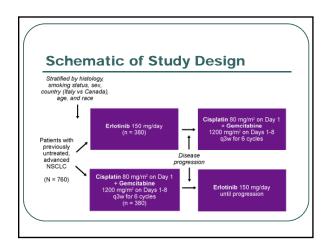
 Phase III study initiated to compare crizotinib with standard-of-care chemotherapy (pemetrexed or docetaxel) in ALK-positive NSCLC

Advanced Non Small Cell Lung Cancer

TORCH: international, multicenter, randomized phase III trial[1]

1. Gridelli C, Ciardiello F, Feld R, et al. International multicenter randomized phase III study of first-line erlorinib (E) follow by second-line cisplatin plus generication (GQ) servaus first-line G followed by second-line E in advanced non-smale lung cancer (aNSCLC): the TORCH trial. Program and abstracts of the 2010 Annual Meeting of the American Society of Clinical Oncology: June 4-8, 2010; Chicago, Illinois. Abstract 7508.

Background


- Erlotinib in advanced NSCLC
 - Prolonged OS in pretreated, unselected patients with advanced NSCLC not eligible for further chemotherapy[2]
 - Phase II studies suggest erlotinib potential alternative to chemotherapy for first-line treatment in unselected patients[3,4]

2. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123-135.

Engl J

TORCH: First-line Erlotinib Followed by Chemotherapy Inferior to First-line Chemotherapy Followed by Erlotinib in Advanced NSCLC

Current study assessed noninferiority in OS of first-line erlotinib followed with chemotherapy at disease progression vs first-line chemotherapy followed with erlotinib at disease progression

Eligibility

- Inclusion criteria
 - Cytologically or histologically confirmed **NSCLC**
 - Stage IIIB (with metastasis to supraclavicular nodes or with pleural effusion)
 - Stage IV
 - 18-70 years of age
 - Canadian centers did not apply upper age limit
 - ECOG performance score 0-1

Eligibility

- Exclusion criteria
 - Previous chemotherapy for advanced disease
 - Previous adjuvant treatment (> 1 year prior) permitted with no gemcitabine

Baseline Characteristics

Salut Sections	Chemotherapy (n = 380)	Erlotinib (n = 380)
Male, %	66	66
Age		
 Median age, yrs (range) 	63 (27-79)	62 (34-81)
• Younger than 70 yrs of age, %	95	95
Country, %		
• Italy	91	81
Canada	19	19
Race, %		
East Asian	3	3
Other	97	97
Smoking status, %		
• Never	21	21
Former or current	79	79

Baseline Characteristics

Characteristic	Erlotinib → Chemotherapy (n = 380)	Chemotherapy → Erlotinib (n = 380)
ECOG performance score, %		
• 0	52	49
• 1	48	51
Stage, %		
• IIIB	12	10
• IV	88	90
Histology, %		
Adenocarcinoma or BAC	55	56
Other	45	44

Description of Current Analysis

- Primary endpoint
 - Overall survival (OS)

Description of Current Analysis

- Secondary endpoint
 - Toxicity
 - National Cancer Institute Common Terminology Criteria for Adverse Events v3
 - Response
 - Response evaluation criteria in solid tumors
 - PFS

Description of Current Analysis

- Secondary endpoint
 - Quality of life
 - European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30 and LC13
 - Pharmacoeconomics
 - Biomarkers
 - Tumor
 - Blood

Main Findings

First-line erlotinib inferior to first-line chemotherapy for OS in NSCLC

Median OS, mos	Erlotinib → Chemotherapy (n = 380)	Chemotherapy → Erlotinib (n = 380)	HR (95% CI)
Interim analysis*	7.7	10.9	1.40
	(6.6-10.4)	(9.3-13.3)	(1.13-1.73)
Updated analysis†	8.5	12.0	1.36 [‡]
	(7.2-10.5)	(10.3-14.8)	(1.12-1.65)

* Cutoff November 2009; median follow-up: 8.3 months. †Cutoff May 2010; median follow-up: 12.9 months. †P = .002

Main Findings

Inferiority of first-line erlotinib for survival confirmed in subgroup analysis

IR of Death	HR	95% CI
Overall	1.36	1.12-1.65
Sex		
Male	1.39	1.10-1.75
* Female	1.34	0.94-1.91
tistology		
Adenocarcinoma or BAC	1.64	1.26-2.15
• Other*	1.09	0.02-1.45
Smoking status		
• Never	1.32	0.02-2.13
Current/former	1.39	1.12-1.71

Main Findings

Compared with chemotherapy, first-line erlotinib also had reduced responses as measured by other efficacy outcomes

Outcome	Erlotinib → Chemotherapy (n = 380)	Chemotherapy → Erlotinib (n = 380)
Median PFS,* mos (95% CI)	2.2 (2.1-2.4)	5.7 (4.9-6.4)
Objective response,† %	18	32
CR with first-line treatment	< 1	1
PR with first-line treatment	9	27
CR with second-line treatment	1	< 1
PR with second-line treatment	9	6
No response, %	02	68
• PD	27	17

Other outcomes

- \bullet Significantly higher toxicity in chemotherapy \rightarrow erlotinib arm
- Only diarrhea and skin effects (including rash) higher in erlotinib

Adverse Event (Any Grade),* %	Eriotinib Chemotherapy (n = 380)	Chemotherapy Eriotinib (n = 380)	P Value
Hematologic toxicity			
Neutropenia	19	43	< .001
Anemia	35	59	< .001
* Thrombocytopenia	15	33	< .001
Nonhematologic toxicity			
Fatigue	56	65	.02
Nausea	41	59	< .001
Vomiting	22	41	< .001
Constipation	19	29	< .001
Neurotoxicity	20	27	.02

Other outcomes

Adverse Event (Any Grade),* %	Eriotinib → Chemotherapy (n = 380)	Chemotherapy → Erlotinib (n = 380)	Value
Hair loss	8	15	.004
Renal toxicity	7	13	.003
 Allergy 	2	4	.04
Diarrhea	40	23	< .001
Skin rash	68	34	< .001
Other skin effect	40	21	< .001

*Reported with first-line or second-line treatment.

Summary of Key Conclusions

- First-line erlotinib followed by chemotherapy (cisplatin/gemcitabine) at progression
 - inferior to first-line chemotherapy followed by erlotinib at progression in unselected patients with advanced (stage IIIB/IV) non-small-cell lung cancer (NSCLC)
 - Lower efficacy outcomes
 - os
 - PFS
 - ORR

Summary of Key Conclusions

 First-line chemotherapy followed by erlotinib at disease progression remains the standard of care for unselected patients with advanced stage NSCLC

Metastatic Melanoma

MDX010-20: multicenter, double-blind, randomized, placebo-controlled phase III trial[1]

1. O'Day S. Hodi FS, McDarmott D, et al. A phase III, randomizad, double-blind, multicenter study comparing monotheragy with igilinumatio or gription period vectore and the combination in patients with previously treated, unresectable stage III or IV melanoma. Program and abstracts of the 2010 Annual Meeting of the American Societ of Clinical Oncology, June 48, 2010; Chicago, Illinoid, Abstract 4.

Background

- Metastatic melanoma associated with poor prognosis, rising incidence
 - Treatment options limited, with no therapies approved for previously treated patients
 - No treatments investigated in a randomized, placebocontrolled clinical trial have demonstrated survival benefit in this setting
- Two immunotherapeutic strategies demonstrated activity in earlier studies

Ipilimumab

 Fully human monoclonal antibody targeting CTLA-4, a receptor present on T-cell surface that normally downregulates T-cell activation

Ipilimumab

 Binding of ipilimumab to CTLA-4 promotes Tcell activation by antagonizing inhibitory activity of CTLA-4

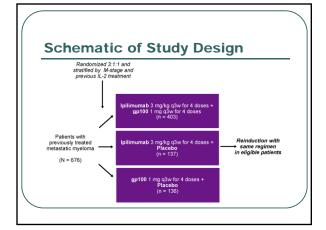
Ipilimumab

- Associated with immune-associated adverse events
- Demonstrated durable responses as monotherapy in phase II study in patients with metastatic melanoma[2]

2. O'Day SJ, Maio M, Chiarion-Sileni V, et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann

gp100

 Vaccine restricted to patients expressing a specific major histocompatibility complex gene, HLA-A*0201

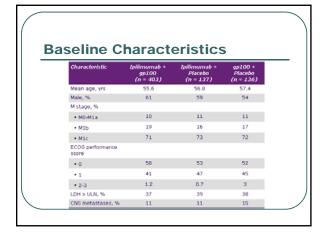

gp100

- Induces T-cell-specific immune responses
- Demonstrated activity in combination with interleukin-2 in patients with metastatic melanoma[3]

Schwartzentruber DJ, Lawson D, Richards J, et al. A phase III multi-institutional randomized study of
immunization with the gp100:209-217(210M) peptide followed by high-dose IL-2 compared with high-dose IL-2 alone
in patients with metastatic melanoma. Program and abstracts of the 2009 Annual Meeting of the American Society of

Ipilimumab Improves
Survival vs gp100 in Patients
With Previously Treated
Metastatic Melanoma

Current study compared efficacy, safety of ipilimumab, gp100, and a combination of both agents in patients with previously treated metastatic melanoma



Eligibility

- Main inclusion criteria
 - Previously treated stage III or IV melanoma
 - HLA-A*0201 positive
 - Previously treated central nervous system metastases permitted
 - No exclusions based on lactate dehydrogenase (LDH) level

Eligibility

- Exclusion criteria
 - Autoimmune disease
 - Previous therapy with anti–CTLA-4 antibody
 - Previous therapy with anticancer vaccine

Description of Current Analysis

Patients recruited from September 2004
 July 2008 from 125 centers in 13 countries

Description of Current Analysis

- Primary endpoint
 - In January 2009 (prior to unblinding) changed from best ORR to OS
 - Primary comparison: ipilimumab plus gp100 vs gp100
 - 90% power to detect OS increase from 8.6 to 10.8 months with 385 events
 - Secondary comparison: ipilimumab vs gp100
 - 80% power to detect 2-month increase in OS with 219 events

Description of Current Analysis

- Secondary endpoint
 - Best ORR
 - Safety

Main Findings Ipilimumab associated with significant OS benefit vs gp100, whether used in combination with gp100 or as monotherapy OS Outcome Ipilimumab + gp100 (n = 403) Ipilimumab · Placebo (n = 137) gp100 + Placebo (n = 136) Median OS, 10.0 10.1 6.4 44 46 25 1-yr OS, % 2-yr OS, % 22 14

Main Findings

Superior PFS with ipilimumab vs gp100, ipilimumab vs combination therapy

PFS Comparison	HR	95% CI	P Value
Ipilimumab + gp100 vs gp100	0.81	0.66-1.00	.0464
Ipilimumab vs gp100	0.64	0.50-0.83	.0007
Ipilimumab + gp100 vs ipilimumab	1.25	1.01-1.53	.0371

Main Findings

 Superior response rates, disease control rates with ipilimumabcontaining regimens vs gp100 alone

Outcome	Ipilimumab + gp100 (n = 403)		gp100 + Placebo (n = 136)	P Value (Ipilimumab + gp100 vs gp100)	P Value (Ipilimumab vs gp100)
Best ORR, %	5.7	10.9	1.5	.0433	.0012
Disease control rate (CR + PR + SD), %	20.1	28.5	11.0	.0179	.0002

Other outcomes

Ipilimumab associated with higher rate of grade 3/4 treatmentrelated adverse events

Treatment-Related Adverse Event, %	Ipilimumab + gp100 (n = 380)	Ipilimumab + Placebo (n = 131)	gp100 + Placebo (n = 132)
Any	88.9	80.2	78.8
Grade 3/4	17.4	22.9	11.4
Death	2.1	3.1	1.5

High incidence of immune-related adverse events in ipilimumab arms To log lipilmumab + placebo (n = 380) | Ipilimumab + placebo (n = 131) | Ipilimumab + placebo (n = 132) | Ipilimumab + placebo (n

All-Grade Immune-Related Adverse Events

High incidence of immune-related adverse events in ipilimumab arms

- Grade 1/2 events generally reversible
- Incidence of immune-related grade 3/4 events with ipilimumab: 10% to 15%
- Can usually be treated with steroids
- Incidence of immune-related deaths with ipilimumab: 1.3% to 1.5%

Summary of Key Conclusions

- Ipilimumab, a anticytotoxic T-lymphocyte antigen-4 (CTLA-4) monoclonal antibody, associated with significant increase in OS, PFS, and response rates vs gp100 peptide vaccine in patients with previously treated metastatic melanoma
 - Represents first randomized phase III trial to demonstrate survival benefit in metastatic melanoma

Summary of Key Conclusions

- No OS or PFS benefit with addition of gp100 to ipilimumab
- Ipilimumab associated with increased rate of grade 3/4 treatment-related adverse events related to its immunomodulatory mechanism of action
- Can be managed with high-dose steroids in majority of patients

Pancreatic Cancer

Randomized phase III trial comparing FOLFIRINOX (F: 5FU/leucovorin [LV], irinotecan [I], and oxaliplatin [O]) versus gemcitabine (G) as first-line treatment for metastatic pancreatic adenocarcinoma (IMPA): Preplanned interim analysis results of the PRODIGE 4/ACCORD 11 trial.

Conroy T, et al. J Clin Oncol 28:15s, 2010 (suppl; abstr 4010)

Background

- Gemcitabine has been considered the standard systemic therapy for unresectable pancreatic cancer since the late 1990s
 - Gemcitabine derived significantly more clinical benefit than those receiving 5-FU (23.8% vs 4.8%, respectively; P = .0022).

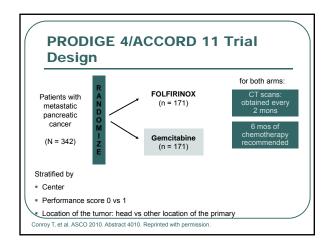
Background

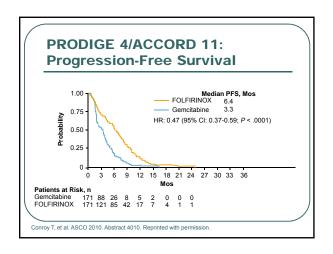
Study, Yr	N	Regimen	ORR	Median OS, mos	1-Yr OS, %
Burris et al, 1997 ^[5]	126	Gem vs 5-FU	23.8 4.8	5.65 4.41	18 2
Bramhall et al, 2001 ^[11]	414	Gem vs marimastat (3 dose levels)	-	5.57 3.50-4.10	19 14-20
Bramhall et al, 2002[12]	239	Gem vs gem/marimastat	16.0 11.0	5.50 5.50	17 18
Moore et al, 2003 ^[13]	277	Gem vs BAY 12-9566	5.9 2.96	6.59 3.74	25 10
Moore et al, 2007[14]	569	Gem vs gem/erlotinib	8.0 8.6	5.91 6.24*	23 17
Kindler et al, 2007 ^[15]	602	Gem vs gem/bevacizumab	47.0 54.0	5.70 6.00	~ 18 ~ 18
Philip et al, 2007[16]	735	Gem vs gem/cetuximab	14 12	5.9 6.4	NR

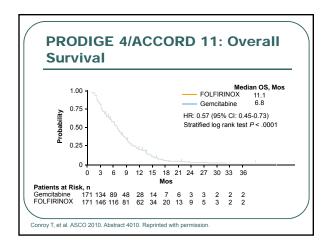
CALGB, Cancer and Leukemia Group B; Gem, gemcitabine; ORR, overall response rate; OS, overall survival *P = .038

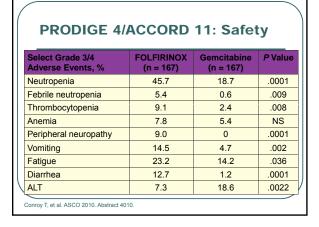
Background

- In a phase II trial of Folfirinox (F) in 35 metastatic pancreatic cancer
 - 26% response rate
 - Median survival of 9.5 months (mo)
 - Quality of life improvement


Conroy, JCO 2005


Background


- In a randomized phase II trial of F vs G in 88 MPA patients (pts),
 - F induces a response rate > 30%


F (O 85 mg/m² d1 + I 180 mg/m² d1 + LV 400 mg/m² d1 followed by 5Fl 400 mg/m² bolus d1 and 2,400 mg/m² 46h continuous infusion biweekly or G (1g/m² IV weekly x7 1 w rest then weekly x 3gdw).

Ychou, ASCO 2007

PRODIGE 4/ACCORD 11: Conclusions

- In patients with metastatic pancreatic cancer FOLFIRINOX associated with significant improvements in PFS and OS vs gemcitabine
 - $^{\rm o}$ Median OS: 11.1 mos; reduced risk of disease progression by 53%
- FOLFIRINOX associated with significantly increased incidence of adverse events, although significantly (P = .001) delays QoL degradation vs gemcitabine
- Investigators asserted that FOLFIRINOX potential new standard of care in this setting

McCahill LE, et al. ASCO 2010. Abstract 3527

Summary

 PRODIGE 4/ACCORD 11: FOLFIRINOX associated with significant improvements in PFS, OS and increased incidence of AEs vs gemcitabine as first-line treatment for metastatic pancreatic cancer

Other GI cancers

- CRYSTAL/OPUS pooled analysis: cetuximab plus chemotherapy associated with significant improvements in OS, PFS, and response rate in patients with mCRC and KRAS wild-type tumors
 - BRAF mutation not predictive of response to cetuximab plus chemotherapy, but is prognostic of poor survival outcome
- COIN: no improvement in OS or PFS with addition of cetuximab to oxaliplatin-based chemotherapy previously untreated advanced CRC
 - KRAS, BRAF, and NRAS mutation status strongly prognostic; those with mutated BRAF had poorest prognosis

Other GI cancers (cont)

- N0147: adjuvant mFOLFOX + cetuximab does not improve rates of DFS, OS in resected stage III colon cancer vs mFOLFOX
- MACRO: after bevacizumab + XELOX induction therapy for patients with mCRC, maintenance bevacizumab comparable to continued bevacizumab + XELOX
- PRIME: in patients with mCRC, first-line panitumumab + FOLFOX4 associated with significantly improved PFS in patients with KRAS wild-type tumors, significantly worse PFS in patients with KRAS-mutated tumors vs FOLFOX4
 - Grade 2-4 skin toxicity associated with significantly longer PFS and OS vs grade 0/1 skin toxicity, regardless of KRAS mutation status

Summary

- NASBP Protocol C10: in patients with stage IV CRC and asymptomatic primary tumors receiving mFOLFOX6 plus Bev without resection, low rate of primary events suggests these patients can be spared initial noncurative resection of primary tumor
- Phase II randomized comparison of modified DCF vs DCF demonstrated comparable OS and time to treatment failure in metastatic gastric cancer
 - Modified DCF had improved toxicity profile vs DCF + G-CSF