Long-term Complications of Allogeneic Haematopoietic Stem Cell Transplantation (AlloHSCT)

Chong Mui Fong, Pharm.D., BCPS, BCOP Senior Clinical Pharmacist Singapore General Hospital 9 September 2018

- To describe the burden of morbidity experienced by alloHSCT survivors
- To identify populations at increased risk of long term complications experienced by alloHSCT survivors
- To summarize current follow-up recommendations for long-term survivors of alloHSCT

Projected numbers of HSCT survivors and temporal course after HCT

HCT survivors continue to remain at risk for late effects long after the risk of malignancy relapse has abated

Battiwalla et al. Biol Blood Marrow Transplant. 2017 ; 23(2): 184–192.

HSCT survivors have higher risk of chronic health problems compared to siblings

Projected Reduction in Life Expectancy Relative to US Population Data as a Function of Attained Age

- The absolute decrease in estimated residual life expectancy ranges from 17.0 years for survivors at 20 years of age to 6.4 years for survivors at 60 years of age
- The proportionate reduction in life expectancy is approximately 30% at any attained age

Late Mortality >2 years after HSCT

Risk Factors for Late Complications

Majhail NS et al. Biol Blood Marrow Transplant. 2012 Mar;18(3):348-71.

Wingard JR, Gastineau DA, Leather HL, Snyder E, Szczepiorkowski ZM, eds. Hematopoietic Stem Cell Transplantation: A Handbook for Clinicians. Bethesda, MD: American Association of Blood Banks (AABB). 2009:473-484.

Neuropsychological effects-

- Depression, anxiety
- Post-traumatic stress disorder
- Neurocognitive deficits

Pulmonary diseases -

- Bronchiolitis obliterans syndrome
- Cryptogenic organizing pneumonia
- Pulmonary hypertension

Kidney diseases -

- Thrombotic microangiopathy
- Nephrotic syndrome
- Idiopathic chronic kidney disease
- Persistent acute kidney injury
- BK virus nephropathy

Iron overload

Bone diseases -

- Osteopenia
- Osteoporosis
- Avascular necrosis

Endocrine diseases

- Thyroid dysfunction
- Gonadal dysfunction
- Diabetes
- Dyslipidemia
- Metabolic syndrome
- Adrenal insufficiency

Solid cancer

- Oral cavity
- Skin
- Breast
- Thyroid
- Other sites

- Cardiovascular diseases

- Cardiomyopathy
- Congestive heart failure
- Valvar dysfunction
- Arrhythmia
- Pericarditis
- Coronary artery disease
- Liver diseases
 - Hepatitis B, Hepatitis C,
 - liver cirrhosis
 - Nodular regenerative/focal nodular hyperplasia

-Gonadal dysfunction/infertility

Infectious diseases

- Pneumocystis jirovecci
- Encapsulated bacteria
- Fungi
- Varicella-zoster virus
- Cytomegalovirus
- Respiratory syncytial virus
- Influenza virus
- Parainfluenza virus

Inamoto Y et al. Haematologica. 2017;102(4):614-625.

Table 1. Late effects after blood and marrow transplantation

Late effect	Incidence	Mortality	Morbidity	Treatable	Preventable
Cardiovascular	+	+	+	+	+
Pulmonary Bronchiolitis obliterans syndrome Cryptogenic organizing pneumonia Pulmonary hypertension	+ + +	++ + ++	++ + ++	+ ++ +	- - -
Endocrine Thyroid dysfunction	++	-	-/+	+++	-
Diabetes Dyslipidemia	++ ++	+ -	+ -/+	+++ +++	-
Adrenal insufficiency	+	-	-/+	+++	-/+
Gonadal dysfunction/infertility	+++	-	-	-/+	-/+
Iron overload	++	-	-	++	-
Liver Hepatitis B Hepatitis C and cirrhosis Nodular regenerative hyperplasia Focal nodular hyperplasia	+ + + +	- - -	+ + -	++ ++ - -	+ -/+ -
Kidney Thrombotic microangiopathy Nephrotic syndrome Idiopathic chronic kidney disease	+ + +	+ - -	++ ++ ++	-/+ ++ +	- - -
Bone Osteoporosis/osteopenia Avascular necrosis	++ +	- -	- ++	++ ++	+ -
Infection	++	+	+	+++	+
Solid cancer	+	++	+++	-/+	-
Neuropsychological	++	-	++	+	-
Recurrent disease	++	+++	+++	-/+	-
Chronic graft-versus-host disease	++	+	++	+	-

+:<20%;++:20%-50%;+++:>50%.

Inamoto Y et al. Haematologica. 2017;102(4):614-625.

Table 1. Definitions of metabolic syndrome according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII), the International Diabetes Federation (IDF), the American Heart Association (AHA) and the World Health Organization (WHO)

	WHO 1998	NCEP ATPIII 2005	IDF/AHA 2009
Definition	DM/IFG or IGT or IR plus ≥ 2 risk factors	≥ 3 risk factors	≥3 risk factors
Risk factor Abdominal obesity Triglycerides	Waist circumference: dependent on ethnicity ≥ 150 mg/dL (≥1.7 mmol/L)	Waist circumference: >102 cm (>40 in) in men; >88 cm (>35 in) in women \ge 150 mg/dL (\ge 1.7 mmol/L) or drug treatment for elevated levels	Waist circumference: population- and country-specific definitions ≥ 150 mg/dL (≥1.7 mmol/L) or drug treatment for elevated levels
Men	< 35 mg/dL (0.9 mmol/L)	< 40 mg/dL ($<$ 1.0 mmol/L) or drug	< 40 mg/dL(< 1.0 mmol/L) or drug
Women	< 39 mg/dL (1.0 mmol/L)	< 50 mg/dL ($<$ 1.3 mmol/L) or drug treatment for reduced levels	< 50 mg/dL ($<$ 1.3 mmol/L) or drug
Blood pressure	≥ 140/ ≥ 90 mm Hg	\geq 130/ \geq 85 mm Hg or drug treatment for HTN	\geq 130/ \geq 85 mm Hg or drug treatment for HTN
Fasting glucose	IGT, IFG, or type 2 DM	\geq 100 mg/dL (\geq 6.11 mmol/L) or drug	\geq 100 mg/dL (\geq 5.6 mmol/L) or drug
Microalbuminuria	> 30 mg albumin per g creatinine	treatment for DM	treatment for DM

Abbreviations: DM = diabetes mellitus; HDL = high-density lipoprotein cholesterol; HTN = hypertension; IGT = impaired glucose tolerance (2-h postprandial glucose 140–199 mg/dL (7.8–11.1 mmol/L)); IFG = impaired fasting glucose (fasting glucose 100–126 mg/dL (5.6–7 mmol/L)); IR = insulin resistance.

DeFilipp Z et al. Bone Marrow Transplant. 2017;52(2):173-82.

- Prevalence varies from 7.5 49%
- Occurs at median of 4 to 18 years after HSCT
 - McMillen et al. reported 40% of adult alloHSCT population with MS at 1 year
 - Longer follow up data not included to show if persisted over time

- AlloHCT recipients predisposed to develop MS through several mechanisms
 - Conditioning regimen-mediated damage to the neurohormonal system and vascular endothelium e.g. TBI
 - Immunological and inflammatory effects of allografting
 - Subsequent GvHD and its therapy

- MS has not yet been proven to impact cardiovascular risk after alloHSCT
- Individuals in the general population with MS twice as likely to develop CV disease than those without MS

DeFilipp Z et al. Bone Marrow Transplant. 2017;52(2):173-82. Grundy SM et al. Circulation. 2005;112(17):2735-52.

Cardiovascular Death Among Recipients of HSCT

Risk of cardiovascular hospitalizations and mortality increased by 3.6-fold in HSCT recipients compared with the general population

Chow EJ, et al. Ann Intern Med. 2011;155(1):21-32.

Monitoring Recommendations

Organ system	Clinical measure	Screening guidelines - 2017 CIBMTR and EBMT, 2012 CIBMTR and NMDP recommendations
	Weight, height and BMI	 Weight, height and BMI assessment at every clinic visit (at least yearly) Waist circumference measurement yearly Consider DXA to assess sarcopenia
Cardiac and	Dyslipid- emia	 Initial lipid profile 3 months after HSCT High-risk patients (on CNIs and corticosteroids), repeat every 3–6 months Standard risk patients, lipid profile every 5 yrs in males ≥35 yo and females ≥45 yo Shorter intervals for lipid levels close to that warranting therapy
vascular	Blood pressure	- Blood pressure assessment at every clinic visit (at least yearly)
	Hyper- glycemia	 High-risk patients with ongoing risk factors (on systemic corticosteroids), HbA1C or fasting plasma glucose 3 months after HCT, repeat every 3–6 months Standard risk adult patients, screening every 3 years in adults ≥45 years or in those with sustained higher blood pressure (>135/80 mmHg)

DeFilipp Z et al. Bone Marrow Transplant. 2017;52(2):173-182.

Bone Diseases

- **Bone loss**
 - Osteopenia T score between -1 and -2.5
 - **7** Osteoporosis T score \leq -2.5
- Incidence has been reported up to 32% for osteoporosis and 50% for osteopenia with occurrence within 6-12 months after alloHSCT
 - Most significant loss in BMD during first 6 months after HSCT

Cosman F et al. Osteoporos Int. 2014;25(10):2359-81. NS Majhail et al. Bone Marrow Transplant. 2012;47(3):337-41. Bhatia S. Hematology Am Soc Hematol Educ Program. 2014 ;2014(1):495-503.

Mechanisms of Bone Loss

Contributing factor	Mechanism
Increase in bone resorption	
Renal dysfunction	Decrease in 1,25 (OH) ₂ vitamin
	D3 production, secondary
	hyperparathyroidism
Calcineurin inhibitors	Decrease in renal function,
	osteoclast activation
Chemotherapy	Hypogonadism causing decrease
	in estrogen and testosterone
TBI/cranio-spinal	Hypogonadism
irradiation	
Corticosteroids	Osteoclast activation, secondary
	hyperparathyroidism
Decrease in bone production	
Malabsorption	Decrease in calcium and vitamin D
(e.g. GVHD, mucositis)	absorption
Renal dysfunction	Magnesium and calcium wasting
Chemotherapy	Direct inhibitory effect on osteoblast
15	formation and activity
TBI/cranio-spinal	Direct inhibitory effect on osteoblast
irradiation	formation and activity, decrease in
	growth hormone and IGF-1 production
Corticosteroids	Apoptosis of osteoblasts: inhibition of
	osteoblastogenesis: decrease in calcium
	levels due to inhibition of gastrointestinal
	absorption and increase in renal excretion

McClune et al. Bone Marrow Transplant 2011; 46: 1–9.

Bone Diseases

- Bone mineral loss increases risk of fractures just as it does in the general population
- Nontraumatic fractures observed in 10.6% of the population within 3 years after HCT
- Skeletal complications such as osteoporosis and osteoporotic fractures can adversely affect life quality

Monitoring Recommendations

Organ system	Clinical measure	Screening guidelines - 2012 CIBMTR and NMDP recommendations
Skeletal	BMD	 Dual-photon densitometry (largely superseded by DEXA) at 1 year for all alloHSCT recipients Subsequent testing determined by defects or to assess response to therapy
	Calcium / Vitamin D levels	 No recommendations Physical activity, vitamin D and calcium supplementation recommended to prevent loss of bone density

Late Infections

- Important cause of late morbidity and mortality in both autologous and allogeneic HSCT recipients
- Adequate reconstitution of the cellular and humoral immune systems
 - 7 6−12 months after autologous HSCT
 - 2 years or more in allogeneic HSCT
- Further delayed in patients who develop GVHD

Late Infections

- Patients needing long-term immunosuppression for ongoing chronic GVHD are particularly at risk for infections by
 - Encapsulated bacteria
 - Fungi
 - Viruses
- Vaccinations should begin at 6–12 months after transplantation
 - Follow consensus recommendations for infection prevention in HSCT recipients
 - ASBMT (2009), IDSA (2013), ECIL (2017), CDC (2018)

Majhail NS et al. Hematol Oncol Stem Cell Ther. 2017;10(4):220-227.

Monitoring Recommendations

Organ system	Organism	Screening / preventive measures - 2012 CIBMTR and NMDP, 2009 ASBMT recommendations						
Immune system	РСР	 Prophylaxis for initial 6 months after HSCT for all Beyond 6 months for patients who have cGVHD or are receiving immunosuppressive therapy 						
	Viruses	 Prophylaxis of VZV reactivation for initial 1 year CMV monitoring in patients at high risk for reactivation 						
	Encapsulated organisms	 Prophylaxis in patients with cGVHD or are receiving immunosuppressive therapy 						

Immunization post transplant according to published guidelines

NS Majhail et al. Bone Marrow Transplant. 2012;47(3):337-41.

Limitations of Current Studies

Data amongst Asian patients with regards to incidence of metabolic syndrome (MS), cardiovascular (CV) events and bone density loss post alloHSCT, as well as factors predisposing survivors to these complications are lacking

Singapore General Hospital SingHealth

Characterization of Long-term Effects in Allogeneic Haematopoietic Stem Cell Transplantation (AlloHSCT) Survivors

Chong MF¹, Lim YJ¹, Linn YC², Ng HY¹

Department of Pharmacy, Singapore General Hospital, Singapore, 2Department of Haematology, Singapore General Hospital, Singapore

INTRODUCTION

- Long-term survivors of allogeneic hematopoietic stem cell transplantation (alloHSCT) are at substantial risk for developing medical late effects such as metabolic syndrome (MS) and bone loss
- Potential contributing factors for these complications include pre-transplant conditioning, intensive immunosuppressive therapy and post-transplant endocrine dysfunction
- Recommendations for screening and preventive strategies for alloHSCT HSCT survivors have been made collectively by transplant experts from EBMT, CIBMTR and ASBMT
- Characterizing long-term effects in local alloHSCT survivors is important to guide interpretation and adaptation of international guidelines to local practice

OBJECTIVES

- To determine the incidence of MS, CV events, bone density loss and fractures in patients who underwent alloHSCT for hematologic disorders
- To evaluate the potential association between patient factors and the development of MS, cardiovascular events, bone density loss and fractures

METHOD

- Retrospective review of patients \ge 21 years who underwent alloHSCT between January 2011 and December 2016, with a minimum follow up period of 6 months
- Patients with MS related data made up the CV study population, whereas patients with bone loss related data made up the skeletal study population

RESULTS (cont'd)

- Incidence of MS and CV events 15.4% and 5.5% respectively
- Median follow up 3.6 years (0.53 – 41.3)
- Median time to MS diagnosis
 = 356 (44 1792) days post alloHSCT

Incidence of bone loss and fractures 74.2% and 6.5% respectively

 Median follow up of 4.8 years (1.4 - 6.7)

Figure 1: Incidence of chronic health conditions after alloHSCT (A) Incidence MS and CV events (B) Incidence of bone loss and fractures

Baseline abdominal obesity, elevated triglycerides and fasting hyperglycemia were significantly associated with development of MS post alloHSCT

Objectives

- Primary objective:
 - Determine the incidence of MS, CV events, bone density loss and fractures in a cohort of patients who underwent alloHSCT for hematologic disorders
- Secondary objectives:
 - Evaluate the potential association between patient/transplant factors and development of MS, cardiovascular events, bone density loss and fractures

Methodology

- Retrospective review of patients ≥ 21 years who underwent alloHSCT between January 2011 and December 2016, with a minimum follow up period of 6 months
- Patients with MS related data made up the CV study population, whereas patients with bone loss related data made up the skeletal study population
- All analyses were performed using SPSS version 23

IDF/AHA 2009 Criteria for Metabolic Syndrome

	IDF/AHA 2009
Definition	≥ 3 risk factors
Risk factor	
Abdominal	Male: \geq 90 cm, Female: \geq 80 cm (Asians)
obesity	BMI ≥ 27.5kg/m ² = high risk (WHO 2004) – surrogate
Triglycerides	\geq 150 mg/dL (\geq 1.7 mmol/L) or drug treatment for elevated levels
HDL cholesterol	Men: < 40 mg/dL (< 1.0 mmol/L) or drug treatment for reduced levels Women: < 50 mg/dL (< 1.3 mmol/L) or drug treatment for reduced levels
Blood pressure	\geq 130/ \geq 85 mm Hg or drug treatment for HTN
Fasting glucose	\geq 100 mg/dL (\geq 5.6 mmol/L) or drug treatment for DM

Alberti KG et al. Circulation 2009; 120: 1640–1645. Lee J et al. Clin endocrinol. 2008;69(2):225-230. WHO Expert Consultation. Lancet. 2004;363(9403):157-63.

Results – Study population

Characteristic	All p	atients	No MS	6 (n=61)	MS (n=17)		Pre-ex	cisting MS	p-value
	(n=9	5)					(n=13)		
	n	Percent	n	Percent	n	Percent	n	Percent	
		or Range		or Range		or Range		or Range	
Median age, yr	50	21-68	48	21-66	51	27-67	59	38-68	0.005
Race									
Chinese	73	76.8%	47	77.0%	13	76.5%	9	69.2%	
Malay	7	7.4%	6	9.8%	0	0%	1	7.7%	0.300
Others	15	15.8%	8	13.1%	4	23.5%	3	23.1%	
Male gender	41	43.2%	27	44.3%	6	35.3%	8	61.5%	0.351
Primary disease									
Acute leukemia	64	67.4%	40	65.5%	9	53.0%	12	92.3%	
Myelodysplastic	14	14.7%	9	14.7%	5	29.4%	0	0%	
syndrome									0.642
Chronic leukemia	5	5.3%	4	6.6%	1	5.9%	0	0%	0.043
Lymphoma	6	6.3%	4	6.6%	1	5.9%	1	7.7%	
Others	6	6.3%	4	6.6%	1	5.9%	0	0%	
> 1 HSCT	4	4.2%	3	4.9%	1	5.9%	0	0%	1.00
Stem cell source									
Peripheral blood	84	88.4%	51	83.6%	16	94.1%	13	100%	
stem cells									0.505
Bone marrow	5	5.3%	4	6.6%	1	5.9%	0	0%	0.090
Cord blood	6	6.3%	6	9.8%	0	0%	0	0%	

Results – Study population (cont'd)

Characteristic	All p	patients No MS (n=61) MS (n=		IS (n=17) Pre-existing MS			p-value		
	(n=9	5)					(n=13)		
	n	Percent	n	Percent	n	Percent	n	Percent	
		or Range		or Range		or Range		or Range	
Conditioning regimen									
Myeloablative	29	30.5%	23	37.7%	3	17.6%	1	7.7%	
Non-myeloablative /	66	69.5%	38	62.3%	14	82.4%	12	92.3%	0.378
Reduced intensity									
Use of TBI	30	31.6%	23	37.7%	4	23.5%	2	15.4%	0.238
Immunosuppressant t	aperin	g		•		•			
Time to	99	28-663	97	28-663	103	48-429	90	28-255	
immunosuppression									0.452
tapering, days									
aGVHD Diagnosis	56	58.9%	37	60.7%	10	58.8%	6	46.2%	0.628
aGVHD Treatment									
Budesonide and	40	42.1%	28	45.9%	8	47.1%	3	23.1%	0.207
other topical steroids									0.297
Systemic steroids	34	35.8%	20	32.8%	7	41.2%	4	30.8%	0.796
cGVHD Diagnosis	40	42.1%	28	45.9%	6	35.3%	4	30.8%	0.505
cGVHD Treatment			•				•		
Systemic steroids	33	34.7%	23	37.7%	5	29.4%	3	23.1%	0.605
Total time on	84	0-2061	84	0-1555	106	0-1322	34	0-2061	
systemic steroids,									0.839
days									

Results – Primary Objective

- Median follow up 3.6 years (0.53 41.3)
- Total incidence of CV events = (5/91) x 100 = 5.5%; All CHD
- Median time to diagnosis of MS = 356 (44 1792) days post alloHSCT

Discussion – Primary Objective

Tichelli A et al. Haematologica. 2008;93(8):1203-10. Tichelli A et al, Blood. 2007 Nov 1;110(9):3463-71. 71 DeFilipp Z et al. Bone Marrow Transplant. 2017;52(2):173-182. McMillen KK et al. Metab Syndr Relat Disord. 2014;12(7):367-

Results – Primary Objective (cont'd)

Total incidence of fractures: $(2/31) \times 100 = 6.5\%$

Discussion – Primary Objective

McClune et al. Bone Marrow Transplant 2011; 46: 1–9. NS Majhail et al. Bone Marrow Transplant. 2012;47(3):337-41. Claudia M et al. Blood. 2004;103:3635-3643

Results – Secondary Objectives (cont'd)

Variables	Univariate Ar	nalysis	Multivariate Analysis (Adjusted for pre-existing MS)		
	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	
Age	NA	0.003	NA	NA	
Abdominal obesity	25.7 (3.1 – 215.3)	<0.001	45.5 (4.0 – 500.0)	0.002	
Elevated triglycerides	9.2 (3.0 – 27.7)	<0.001	16.4 (3.8 – 71.4)	<0.001	
Reduced HDL-C	3.9 (1.4 – 10.7)	0.007	NA	NA	
Hypertension	12.0 (4.0 – 36.4)	<0.001	NA	NA	
Fasting hyperglycemia	22.6 (14.6 – 110.0)	<0.001	43.5 (6.8 – 250.0)	<0.001	

Underscores importance of controlling risk factors pre-transplant so as to optimize outcomes after alloHSCT.

Results – Secondary Objectives (cont'd)

n (%)	(A) Pre- transplant	(A) Post- transplant	(B) Pre- transplant	(B) Post- transplant	(C) Pre- transplant	(C) Post- transplant	Total pre- transplant	Total post- transplant
Abdominal Obesity	1 (1.6)	5 (8.2)	4 (23.5)	6 (35.3)	5 (38.5)	8 (61.5)	10 (11.0)	19 (20.9)
Elevated TG	6 (9.8)	35 (57.4)	6 (35.3)	15 (88.2)	9 (69.2)	12 (92.3)	21 (23.1)	62 (68.1)
Reduced HDL-C	9 (14.8)	23 (37.7)	1 (5.9)	13 (76.5)	11 (84.6)	12 (92.3)	21 (23.1)	48 (78.7)
HTN	6 (9.8)	12 (19.7)	5 (29.4)	11 (64.7)	12 (92.3)	12 (92.3)	23 (25.3)	35 (38.5)
Elevated FG	2 (3.3)	6 (9.8)	4 (23.5)	13 (76.5)	9 (69.2)	9 (69.2)	15 (16.5)	28 (30.8)

Study	Year	N	Age	Stem cell source (n)	Median time after HSCT, yr	Treated with TBI	P/1	MS, %	Other		36
Taskinen											
M et al.	2000	23	10-32	Allo	10.8	78	Р	39	-		
(14) Taskinon											
M et al	2007	21	7.24	Allo	c	00	D	20	48% developed GH	I deficiency	
(32)	2007	51	7-34	Allo	0	50	r	39	(75% with MS)		
Oudin C et				Allo (39).							
al. (33)	2011	60	18-41	auto (21)	15.4	72	Р	15	-		
Bajwa R et	2012	160	5.28	Allo (99),	7	37	D	75	17% developed GF	Ideficiency	
al. (34)	2012	100	3-20	auto (70)	<i>'</i>	37	r	7.5	1776 developed di		
Frisk P et al. (35)	2012	18	17-37	Allo (3), auto (15)	18.2	100	Ρ	17	39% treated with radiation	Impor	tant to
Paris C et al. (10)	2012	69	6-25	Allo (59), auto (10)	4	55	Ρ	32	Low HDL most cor component. Corti use before or afte was most significa factor for MS	monit panels in this	or lipid 5 routinely patient
Oudin C et al. (12)	2015	170	24.8 ± 5.4	Allo (124),	14.5 (mean)	73	I	17	9% treated with cranial/craniospin GH deficiency ass	popula	ation
				auto (46)					increased MS risk		
Higgins K et al. (31)	2005	16	25-54	Allo (13), auto (3)	6 (mean)	93	Ρ	25	Hypertriglycerider common	nia most	
Annaloro C et al. (8)	2008	85	26-63	Allo (39), auto (46)	9	78	Р	34	Hypertriglycerider common	mia most	
Majhail NS et al. (9)	2009	86	21-71	Allo	3	77	Р	49	Hypertriglycerider common	mia most	
McMillen KK et al. (11)	2014	785	18-74	Allo	-	48	I	48% (at day 80) 40% (at 1 year)	Hypertriglycerider common	mia most	

Results – Secondary Objectives (cont'd)

Variables	Univariate Analysis		Multivariate Analysis (Adjusted for pre-existing osteopenia)	
	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value
Female	17.3 (1.4 – 210.1)	0.028	50 (1.9 – 1000)	0.02
Baseline BMI	NA	0.038	1.9 (1.0 – 3.6)	0.06

- Baseline BMI 21.3 (16.2 26.7) vs 24.3 (21.3 34.2) in groups with and without post alloHSCT bone loss respectively
- Only female gender remained significant on multivariate analysis, after adjusting for pre-existing osteopenia
- Other factors were not significantly different between the 2 groups

Limitations

- Retrospective study
 - Only associations, but not causal relationships can be determined
 - Accuracy and completeness of data collection is largely dependent on high quality existing data
- Small sample size of this study
- Information bias
 - Patients without MS or BMD data were excluded

Limitations

- BMI may not be a sufficient measure of abdominal obesity and muscle loss
 - Waist circumference preferred emphasizes visceral adipose deposits
 - Does not measure sarcopenia change in strength and mass of skeletal muscles
 - Studies reporting waist circumference at time of and following HSCT are limited BMI a possible surrogate

Learning Points from Study

- Suboptimal control of CV risk factors at baseline potentially increases the risk of developing MS post alloHSCT
- Females are at increased risk of developing bone loss post alloHSCT
- Importance of developing institution guideline and methods for implementation to improve long term outcomes
 - Screening chart
 - ↗ Long-term follow up clinic

Clinical Recommendations: Cardiovascular Complications

Pre-transplant

- Clinical Hx, FH, symptoms
- Control pre-existing HTN,
 DM, dyslipidaemia, obesity
- Post transplant Screening and treatment
 - **B**P
 - Lipid profile

 - Waist circumference / BMI

- Endocrine Evaluation:
 - Gonadal and thyroid function, growth hormone
- Risk modification
 - Diet low fat, low cholesterol
 - **Exercise**
 - Avoid smoking
 - Limit alcohol

Clinical Recommendations: Skeletal Complications

Pre-transplant

Identify patients at risk – female, low baseline BMI

Post transplant - Screening and treatment

- **BMD**
- Endocrine evaluation
- Consider earlier monitoring in patients with cGVHD
- Risk modification
 - Calcium and vitamin D supplementation
 - **7** Exercise
 - Avoid smoking, Limit alcohol

NS Majhail et al. Bone Marrow Transplant. 2012;47(3):337-41.

Take Home Message

- Advances in alloHSCT and supportive care strategies have resulted in improvements in HSCT outcomes and an expanding population of long term survivors
- However, HSCT survivors remain at risk for late complications and premature mortality
- HSCT survivors need individualized and patient-centric followup care provided through a multidisciplinary collaborative care model that considers their preferences and needs

Take Home Message

- A treatment summary and survivorship care plan can facilitate care coordination
- Provides comprehensive summary of
 - Patient's diagnosis
 - Pre-transplant therapies, transplant course, and post transplant complications
 - Evaluations recommended for late effects monitoring
 - Provider responsible for conducting evaluation

Long-term Complications of Allogeneic Haematopoietic Stem Cell Transplantation (AlloHSCT)

Chong Mui Fong, Pharm.D., BCPS, BCOP Senior Clinical Pharmacist Singapore General Hospital 9 September 2018

Questions

Email: chong.mui.fong@sgh.com.sg